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ABSTRACT Approximate equations are derived for the amount of information a
nerve cell or group of nerve cells can transmit about a stimulus of a given duration
using a frequency code (i.e., assuming the mean frequency of nerve impulses meas-
ures the intensity of a maintained stimulus). The equations take into account the
variability of successive interspike intervals, and any serial correlations between
successive intervals, but do not require detailed assumptions about the mechanism
of impulse initiation. The errors involved in using these approximations are evaluated
for neurons which discharge either completely regularly, completely at random
(Poisson process) or show a particular type of intermediate variability (gamma
distribution model). The errors become negligibly small as the stimulus duration or
the number of functionally similar nerve cells increases. The conditions for applying
these equations to experimental data are discussed. The application of these equa-
tions should help considerably in eliminating the enormous discrepancies between
some earlier estimates for the information processing capabilities of single nerve
cells and systems of nerve cells.

INTRODUCTION

Since Shannon (1948) developed a theory for transmission of information in
electrical systems, biologists, engineers, and mathematicians have tried to apply this
theory to the study of nerve cells. The theory was appealing since, at least in the
periphery, one of the major functions of nerve cells is the transmission of informa-
tion about the environment to the central nervous system. Thus, information theory
offered the possibility of comparing quantitatively the function of different nerve
cells and sensory systems. However, attempts to apply information theory have led
to enormous discrepancies. Rapoport and Horvath (1960) estimated the information
capacity of single cells at 4000 bits of information per second, but Jacobsen (1950,
1951), studying systems of cells, calculated capacities per cell of only 0.3 and 5 bits/
sec. Finally, Quastler (1956) found that whole organisms containing 10*° or more
nerve cells could transmit less than 100 bits/sec. In this paper I shall reexamine
systematically the information capacity of individual nerve cells and groups of

797



cells and try to clarify the reasons for these discrepancies. In addition, a number of
formulae will be derived which should greatly simplify calculations, from experi-
mental data, of the information transmitted by nerve cells.'

The discussion of information processing in the nervous system will follow closely
Shannon’s now famous development of the subject for other communications
systems. However, there is a fundamental difference between the code used by many
nerve cells and that used in most electrical communications systems. A common form
of electrical coding is a binary pulse code. Time is divided into discrete intervals
and in each interval one of two alternatives or one binary bit of information is sent.
Since a neuron can fire up to 1000 all-or-none impulses/sec, it might transmit 1000
bits/sec with a binary code. Rapoport and Horvath (1960, see also Mackay and
McCulloch, 1952) estimated that using the duration of each interval to encode
information could increase transmission, possibly to 4000 bits/sec. These estimates
are radically wrong in practice for at least two reasons. First, many neurons, particu-
larly in the peripheral nervous system use neither a binary code nor an interval code,
but a frequency code in which the stimulus intensity is signified by different numbers
of nerve impulses over a period of time (Adrian, 1932). Successive interspike inter-
vals may vary in duration when the stimulus is held constant, but the fluctuations
are inherent in the impulse-generating process (Stein, 1967) and often, only the
mean number of nerve impulses over a period of time, i.e. the mean impulse fre-
quency, conveys information. Even in systems of fast-adapting tactile neurons
where primary afferent fibers discharge only a single impulse (Armett et al., 1962),
the second order neurons fire increasing numbers of impulses as the stimulus in-
tensity is increased. Secondly, in the studies mentioned by Rapoport and Horvath,
finely graded, carefully timed electrical stimuli were applied to axons. However,
these studies are not applicable since in the normal synaptic activation process, pre-
synaptic impulses produce larger, quantal effects at random times so that temporal
fluctuations are orders of magnitude larger (Stein, 1965).

Barlow (1963) noted that for binaural localization of a sound source a certain
amount of precise temporal information must be preserved, and Hall (1964) clari-
fied the neuronal mechanisms of this phenomenon. However, this paper will con-
centrate on frequency coding because of its widespread occurrence peripherally and
hence its importance in transmission of sensory information to the central nervous
system. To distinguish eight different intensities, a frequency code in its simplest
form would require stimuli capable of producing from zero to at least seven nerve
impulses. Thus, frequency coding is inefficient (with a binary code, the occurrence or
nonoccurrence of impulses in three intervals could specify eight intensities) and be-
comes progressively less efficient with increasing numbers of alternatives. However,
the redundancy introduced by inefficient coding has definite advantages for a bio-
logical system, one of whose main functions is survival. With frequency coding, 6

1 A brief account of this work was presented to the 2nd International Biophysics Congress which
took place in Vienna on September 5-9, 1966.
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impulses, if not referring to stimulus intensity 6, probably refers to intensity 5 or 7,
but the binary code 110 = 6, if wrong, could have the quite different value 010 = 2.

These ideas can be made more precise. If one applies a stimulus to a nerve cell for
a time ¢, a number j nerve impulses will be discharged. The number of impulses dis-
charged on a particular trial will be considered as the output or response variable,
and will be denoted y; if j impulses are discharged. If the same stimulus is repeated,
the number of impulses may vary, but from a large number of trials one can deter-
mine the mean number of nerve impulses x produced in the time ¢. If the “state” of
the nerve cell is constant from trial to trial (e.g. there are no changes in the mem-
brane potential, membrane resistance and the level of efferent control, if any,
exerted by the nervous system on the cell’s activity), the mean number will be deter-
mined by the stimulus alone and will often increase monotonically with the stimulus
strength. The mean number of nerve impulses generated x can then be considered as
the input or stimulus variable for the nerve cell, and the range of stimuli is defined by
Xmin < X < Xmax WHEre€ Xmin and Xmax are the minimum and maximum mean num-
bers of impulses produced by natural stimuli.

In any natural or experimental situation, a variety of stimuli will be applied, and
p(x) will denote the probability that the stimulus is such that on average x impulses
are generated. Any random feature in the process of impulse initiation will cause the
number of impulses to vary from trial to trial, and there will be a set of conditional
probabilities that j impulses are discharged, j = 0, 1, 2, - - - o, when the stimulus is
adjusted so that the mean number is x.2 These conditional probabilities will be de-
noted p(y;/x), and they specify the properties of a nerve cell as a communications
channel. The over-all probability p(y;) of j impulses being discharged is obtained by
integrating over all possible stimuli,

PG = [ plys/x)p(x) ds (1)

Tmin

These relationships are illustrated in Fig. 1.

Central to the formulation of information theory is a measure for the uncertainty
of a probability distribution. From the standard formulae (Ash, 1965) one can
define an uncertainty H(Y) for the response distribution

0

H(Y) = — jéop(yj) log p(») )

and a conditional uncertainty H(Y/x) in the set of responses Y given the stimulus x

H(Y/x) = — J;p(yj/x) log p(yi/x) 3

2 Although much of the paper will be concerned with information transmission by single nerve cells,
these definitions and many of the results are easily extended to functionally similar groups of cells
(see section 2 4).
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An important quantity is the average conditional uncertainty H(Y/X) over the
entire stimulus set X
Z,

HY/X) = [ p(o)H(Y/%) dx (4)

Zmin

1

x~Vt Communications Y
stimulus Channel response
determined variable
variable

Probgbilities
P(x) P (y/x) P(Y)

FIGURE 1 The top line shows schematically a neuronal discharge having a steady frequency
vmin. The stimulus of duration ¢ increases the frequency and produces x impulses on average.
This is often considered as the neuron’s response, but it is treated here as the input to a
communications channel, since the average frequency or mean number of impulses may be
the only quantity determined wholly by the stimulus. The response variable y is assumed
to be the number of nerve impulses actually discharged on a single trial. This will vary from
trial to trial because of random fluctuations in the part of the neuronal cycle at which the
stimulus begins, in the duration of successive interspike intervals, and in the “state” of the
neuron. This variability limits the amount of information about the stimulus that the nervous
system (or the experimenter) can obtain from knowing the number of nerve impulses dis-
charged on a single trial. The amount of information transmitted depends on three prob-
ability density functions: p(x), the probability that the stimulus on a trial is x; p(y), the
probability that the response is y; p(y/x), the probability that the response is y given that
the stimulus is x. The last probability density function determines the properties of a neuron
as a communications channel. From it alone one can determine both the capacity of a
neuron to transmit information and the stimulus distribution necessary to attain the in-
formation capacity.

The information transmitted is the difference

I'= H(Y) — H(Y/X) &)
and the (neuronal) information capacity is
C = max L. (6)
»(z)

I shall not attempt to derive these formulae here, but only mention some points
which are essential in understanding the application of these formulae to nerve cells.
(a) X and Y denote the set of inputs and outputs (stimuli and responses) respec-
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tively. For particular stimuli or responses, small letters (x and y) are used, and these
will be given subscripts when they can take only certain, discrete values. Since the
stimulus is continuously variable and the response is discrete, a mixture of integrals
and sums is necessary in equations (2)-(4). In most other applications the input and
output variables are both discrete or both continuous and examples of these types
of channels will also be considered.

(b) The form of H(Y/X) indicates that it is determined by two sets of probabili-
ties, p(x) which depends only on the stimuli, and p(y;/x) which depends only on
the properties of the neuronal information channel. H(Y) is determined by these
same sets of probabilities as indicated by equations (1) and (2). These two sets of
probabilities determine the information transmission, and both can be determined
experimentally without reference to the detailed way in which the stimuli are trans-
formed and nerve impulses initiated. Thus, the formulae offer a framework for
comparing experimentally different nerve cells, provided one can determine the ap-
propriate range of biological stimuli and make assumptions about the coding used.

(c) The term response uncertainty for H(Y) should be clear since H(Y) depends
only on the probability of the various responses. Similarly in equation (4), the
average conditional uncertainty H(Y/X) measures the average uncertainty that
remains, even if the stimuli are specified. The information transmitted, equation (5),
measures the reduction in uncertainty that results from consideration of the correla-
tion between stimuli and responses. To obtain the information capacity C, one must
consider all possible stimulus distributions so as to find the one which gives the
maximum information transmission.

(d) If logarithms to the base 2 are used, the values of uncertainty, information,
and information capacity (see also Ash, 1965) will be measured in bits per stimulus.
The values of capacity quoted earlier had been converted to bits/second by assum-
ing a particular stimulus repetition rate. If the responses to successive stimuli are
independent, this conversion presents no new difficulties. If not, the particular type
of dependence must be considered. The results of this paper will be limited to in-
dependent stimuli though the problem of interaction between successive stimuli will
be considered briefly in the Discussion.

The number of categories M that can be distinguished from the set of responses
represents the antilog of an informational measure. If the information of equation
(5) is measured in bits, then

M=2 )

Natural logarithms are more convenient in deriving analytical results. Where con-
fusion between the two systems is possible, the subscripts 2 and e have been used.
To convert numerical values for uncertainty in natural units to bits, one multiplies
by log; e.

(e) In an electrical communications system, by construction of an efficient en-
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coder, the information capacity can always be approached in principle with suf-
ficiently long messages. However, the biological organism may not be able to alter
sufficiently the way in which the natural stimuli are encoded to approach the informa-
tion capacity. Nonetheless, the concept of information capacity is a useful one, and
it would be interesting to investigate to what extent natural selection has matched
the properties of peripheral nerve cells to the distribution of stimuli that they nor-
mally receive.

The amount of calculation and experimentation involved, particularly if one
wishes to determine the information capacity directly, has severely limited the num-
ber of attempts to apply information theory experimentally to nerve cells, though
there are some notable examples in the literature (FitzHugh, 1957; Werner and
Mountcastle, 1965). The present results are divided into two sections. First, some
specific examples of practical interest are considered to illustrate the use and simpli-
fication of the equations. In the second section, general results are derived for the
limit where a maintained stimulus produces large numbers of responses. Details of
proofs which are not essential to a general understanding of the paper have been
included in small type.

RESULTS

1. Some Examples

A general analytic expression for the information capacity of a neuron using a
frequency code is not possible for two reasons. First, there is at present no adequate
neuronal model from which the conditional probabilities, p(y;/x), can be derived
in closed form. Secondly, even for quite simple models, the calculation of informa-
tion capacity rapidly becomes involved enough to require considerable computer
time. However, reasonably simple results can be obtained with certain assumptions.
Although the experimental neurophysiologist may find the initial examples extreme,
I shall move continually toward more realistic but analytically more difficult ex-
amples. The application of these results to experimental data will be discussed.

(a) Single Nerve Action Potentials (the Binary Channel). The simplest informa-
tion channel is a binary channel in which there are two possible responses. I shall
call the response y; if no impulse is discharged and y; if there are one or more im-
pulses.’ Assume as well two possible stimuli, x; and x, , which have probabilities a
and b respectively of generating an impulse where, for definiteness b > a. These
properties can be specified by a transition or channel matrix.

l1—a a
P =
1—5 b
3 The notation for sections (1 a) and (1 b) differs slightly from that outlined in the Introduction. If

there are no impulses, the response is denoted y; not yo to conform to standard matrix notation in
which indices start at one.
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whose elements are p;; = p(y;/x); i.e., the element in the ith row and jth column
gives the probability that y; is the response to stimulus x; . To maximize informa-
tion transmission @ and b must differ by maximum amounts (X; = Xmin and x; =
Xmax) and the relative probabilities of occurrence of stimuli x; and x, must be opti-
mal. If a = Oand b = 1, one bit can be transmitted. For other fixed values of a and
b, the channel capacity in bits, C;, is

C: = (— bH, + aH,)/(b — a) + log, [1 + 2F«#»/¢=) (1.1)
where
2
H, = HY/x) = — ;PO’;‘/ x1) logz p(y;/x1)
=—(1—alog.(1 —a — alog:a
and

Hy, = H(Y/x;) = — (1 — b)logs (1 — b) — blog, b

To derive this formula, one must invert the channel matrix above which gives the matrix

Q—(b—)‘l[b _“]
- Y1 1-4

Using the elements g,; of this inverted matrix, one can compute the information capacity from
a general equation for a channel with m inputs and outputs (Ash, 1965)

C. = log. 2‘; exp [—Z; g5 H( Y/x.-)] (1.2)
j= i=
where H(Y/x;) = —> 7, (p(y;/x;) log, p(v;/x:). The exponential is used with natural

logarithms and capacity in natural units. With logarithms to the base 2, the expression in
square brackets becomes the exponent of 2. Substituting for the binary channel, one obtains
(see Ash, 1965)

C, = log, (exp [Lgf_ﬁ“ﬁ] 4 et [(1 =L ANCE I)Hb])

which reduces to equation (1.1) above.

If there is no spontaneous activity (a = 0), H, = 0, so the first term on the right
hand side of equation (1.1) is zero and the channel capacity simplifies to

C = log [1 + b(1 — B)*™" (1.3)

The threshold stimulus is often defined as that stimulus that elicits a response 50%
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of the time (b = 14). Then, from equation (1.3) only log. (134) = 0.32 bits of in-
formation could be transmitted per stimulus. (FitzHugh, 1957, has compared in
more detail threshold and informational measures.)

Another point of interest is the behavior of the information capacity for stimuli
short enough that the probability of a response is much less than one. If a cell is
discharging impulses spontaneously at a frequency vmin, as illustrated in Fig. 1,
there will be a probability a = vnin ¢ of an impulse in a short time ¢. This probability
may be increased to b = vmax  When the maximum stimulus is applied, but if @ and
b are much less than one, then the capacity reduces to

log e (vmax)' _ Vmax)]
C Vmax [ [—e— (Vmin) k log (vmin (1.4)

where X = vmin/(Vmax — Vmin)-

To derive equation (1.4) it is best to use natural logarithms. Then, H. = — (1 — a) log.
(1 —a) —alog.a~ a(l — log, a), if a < 1. Similarly, H, ~ b(1 — log. b), if b K 1, so that
the first term on the right hand side of equation (1.1) becomes

—bHa + aH;, ~ ab(loge a— loge b) - —VminVmax [ Ioge (”max/l’min) (l 5)

b—a b—a Vmax — Vmin
Also,
H, — H, b a [(”max)k Vmaxt]
Ha = o 14 % — = Vmax?
— +b—alog°b b_alogea log. — .
Thus, for the second term on the right hand side of equation (1.1),

k
log. [l + exp (H’)] - (z:ﬂ> vm;xt (16)

Combining equation (1.5) and (1.6) produces equation (1.4). In equation (1.4) the factor
log e has been inserted so any logarithmic base can be used, e.g., log: e = 1.443, logy e =
0.4343.

As a typical example, let ym.x = 100 impulses/sec and vnin = 10 impulses/sec.
These values will be used throughout the paper so the results that follow from dif-
ferent assumptions will be comparable. Then, k = 14 and equation (1.4) becomes
C ~ 32t. Thus, the amount of information one can send along a neuronal channel
initially increases linearly with time, though the regression coefficient 32 is less than
one might expect with a total range of 100 — 10 = 90 impulses/sec. As time in-
creases, the information capacity depends on neuronal variability, and I shall now
consider the effects of making different assumptions about neuronal variability.

(b) A Completely Regular Neuron. Consider a model neuron such as that
illustrated in Fig. 1. Depolarization proceeds linearly until threshold. Then, after a
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nerve spike which is assumed short compared to the ramp depolarization duration,
the depolarization is erased and the cycle is repeated. A stimulus is assumed merely
to alter the rate of depolarization. Calvin and Stevens (1966) used a model similar
to this to explain some properties of cat motoneurons. If stimuli of duration ¢ are
applied at random to such a regularly firing cell, the stimulus will occur at different
points of the neuronal cycle. The probability that the stimulus generates a nerve
impulse will then increase linearly with stimulus duration. With a maximal stimulus,
the probability will reach one at f = pg = 1/vmax Where vy is the minimum mean
interspike interval. Similarly, there will be a maximum mean interspike interval
w1 = 1/vmin , if vmin > 0. For the example cited above, the information transmission
rate increases with stimulus duration until at 4o = 10 msec, the information capacity
calculated from equation (1.1) is 0.76 bits (compared to 32 X 0.01 = 0.32 bits
which the results above for short times would indicate). If the duration is in the
range po < ¢t < 2 po, a maximal stimulus will sometimes produce two impulses. One
can also choose a third intermediate stimulus that will always produce one and only
one impulse.
The channel matrix is thus a 3 X 3 matrix as follows:

1—a a 0
0 1 0
0 1—b b

where the three stimuli x; , x; , and x; are the minimum, intermediate, and maximum
stimuli respectively, while the three responses yi , 32, and y; indicate the occurrence
of 0, 1, and 2 nerve impulses. The matrix element p;; is the conditional probability
p(yi/x:) as before, and it is assumed that @ = vpin2and b = vpex £ — 1.

In the region 2 < ¢ < 3p, sometimes 3 impulses occur in response to a maximal
stimulus. One could then select two intermediate stimuli that always produced 1
and 2 impulses respectively. The channel matrix would be

l1—a a 0 0
0 1 0 0
0 0 1 0
0 0 1—-b b

where all quantities are as previously defined except that x, is now the maximal
stimulus and b = vpae ¢ — 2. It is an important property of this matrix that there
are subsets of stimuli that are never confused. Stimuli x; and x; never produce more
than one impulse (response y.), while x; and x, never produce less than two im-
pulses. Now Shannon (1948) indicated that if the information capacity of the nth
distinct subset is C, when symbols (stimuli) in that subset alone are used, the total
capacity is

C = log, 2 2% (1.7)
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The matrices for the subset in the present example are 2 X 2 matrices whose capacity
is given by equation (1.1). Higher order matrices, defined as above for the regularly
firing neuron, can be similarly subdivided. Fig. 2 shows calculated values for in-
formation capacity as a function of time for the first 100 msec assuming vmax = 100
and vmin, = 10 impulses/sec. The capacity has periodicities of uo = 10 msec and g, =
100 msec, although only the first is seen in Fig. 2. The dashed lines in Fig. 2 are
upper and lower limits for the information capacity, given by

108 [d + (anx - Vmin)t] S (o S IOg [1 + (Vmax - Vmin)t] (1°8)

where d is a constant having a value of 0.42 in Fig. 2. The upper limit is an extension
of a formula first proposed as an exact expression by Barlow (1963) for a neuron
without spontaneous activity.

~

FIGUReE 2 Information capacity of a completely
regular neuron (solid line) as a function of the
duration of a maintained stimulus. The dashed lines
are upper and lower limits which converge rapidly
as time (on a logarithmic scale) increases. The
values were calculated for the example described in
the text. The range of neuronal impulse frequencies
was from 10 to 100 impulses/sec.

Capacity (bits)

2 5 10 20 50 100
Time (msec)

The upper limit is obtained as follows: if ¥ax 7 and vmiy ¢ are both integers, then there will
be exactly 1 + (Vmax — ¥mio)? stimuli that can be applied without confusion and hence
log: [1 + (Pmax — Vmin)t] bits of information can be transmitted per stimulus. If either
Vmax I (OF ¥min #) are not integers, there will be some confusion between the two highest
(or lowest) stimuli and one can show that the capacity will be decreased below that given
by the right-hand side of equation (1.8).

The value of 4 in the lower limit is more difficult to obtain directly. If there is no spontaneous
activity, one can write ymax ¢ = j + b where j is an integer and 0 < » < 1. Then from equa-
tions (1.3) and (1.7) it follows that

C=loglji+1+5b1 — b
One can show graphically or analytically that

14+5601 —pTD%>p 4071
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for 0 < b < 1, and thus d = 0.71. If spontaneous activity is present and (max — Vmin)? > 2,
a similar argument can be used for the lowest possible numbers of nerve impulses and one
finds that d is then 0.71 + (0.71 — 1) = 0.42. It is this value of d that was used in Fig. 2,
though it should be noted that the argument depends on being able to subdivide the channel
matrix and consider upper and lower numbers of impulses separately. This is not always
possible for (Vmax — ¥min)? < 2, so a slightly smaller value of 4 may sometimes be necessary”

It follows easily from (1.8) that the limits converge as 1/ since for large ¢

lOg [l + (Vmax - Vmin)t] - 10g [d + (Vmax - Vmin)t]

1 d
- log [1 + (Vmax - Vmin)t] B log [l + (Vmax - Vmin)t]

L —dloge (19)

(Vmax - Vmin)t

The neuron was assumed to fire completely regularly and the only probabilistic
aspect is the part of the cycle at which the stimulus begins. The deviation from the
upper limit is due to the fact that the minimum and maximum stimuli may not be
integers (all the intermediate stimuli were selected at integer values of x, and pro-
duce one and only one number of nerve impulses). Equation (1.9) simply makes
precise the intuitive idea that the wider the stimulus range, the less important are the
“end” values.

There is a further, perhaps less intuitive, result that follows from this analysis. I
have not yet considered the distribution of stimulus probabilities that is necessary to
produce the channel capacity. If the channel matrix is square, an exact expression is
known (Ash, 1965, p. 56) and several optimal distributions are shown in Fig. 3 for
different values of ¢. For a completely regular neuron an optimal stimulus distribu-
tion consists of a series of regularly spaced, equally probable stimuli, except at the
very ends of the stimulus range. It is extremely unlikely that these particular stimulus
distributions would occur naturally, and furthermore, these particular stimuli
would not be optimal for other neurons with slightly different firing rates. It is thus
of interest to consider not a discrete distribution of stimuli, but a continuous rec-
tangular distribution, given by

p(x) = (Xmax — xmin)_l, Xmin < X < Xmax
=0, otherwise. (1.10)

If the stimulus range is large (Xmax — Xmin > 1), approximately 14 log: e = 0.72
bits less information can be transmitted using this distribution than with the op-
timal discrete distribution.

This can be shown as follows: if the stimulus distribution, p(x), is rectangular, the distribu-
tion of numbers of nerve impulses, p(y), will be discrete, but flat except at the very ends of

RicHARD B. STEIN Neuronal Information Capacity 807



the response range. If the frequency of nerve impulses remains constant, the range of numbers
of impulses increases linearly with stimulus duration. Thus, as shown previously,” end ef-
fects” die out as 1/¢ and will be neglected. The response uncertainty is given by

H(Y) = = 2 p0) tog p() ~ = 3 Lotog (i) = log a (111)

where M = (Umax — Vmin) .

06 a b c
®
=
~ 04
<
202 l l |
)
: L
“o0
. 00505 OI5 115 041 2 3 4
3
E d
5

Stimulus  Strength, x

FiGURE 3 Stimulus distributions required to attain the information capacity of the com-
pletely regular neuron described in the text. The distributions consist of regularly spaced
equiprobable stimuli (except toward the end of the stimulus range when the minimum or
maximum stimulus does not produce an integral number of impulses). The stimulus dura-
tions are (a) 5 msec, (b) 15 msec, (c) 40 msec, and (d) 100 msec. With continuous stimulus
distributions, less information could be transmitted.

From equation (4) the average conditional uncertainty is H(Y/X) = | p(x)H(Y/x) dx
where H(Y/x) = — 2, p(y;/x) log p(y;/x). If one considers the unit segment in the middle
of the stimulus continuum where i < x < i + 1, then

p(yi/x) =0 i<i
= —-x+4+i+1, j=1i
=x — j=i+1
=0, j>i+ 1.

Integrating from x = itox =i + 1,

f.'+1 () E(Y B 1 fi-i-l o . ,
. plx /x)__ll—l[.- (—x+i4+1)log(—x+i+1)dx

+ f+ (x — i) log (x — i) dx] (1.12)

Substituting z = —z + i + 1 and using natural logarithms, the first integral on the right
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hand side of (1.12) becomes,

1
f zlogezdz = — 14
0

Similarly, substituting z = x — i, the second integral on the right hand side of (1.12) also
integrates to —14 and the process can be repeated for each of the M unit segments of the
stimulus continuum. Thus, except for end effects, H(Y/X) ~ 1%. The information transmitted
in natural units is then I, = H(Y) — H(Y/X) ~ 108 [(!max — Vmin) ] — % ~ Co — %.
To convert to binary bits, one must multiply by log; e as before.

Although a decrease of a constant amount of information/cell of less than one bit
may not seem important, it does mean a constant decrease of nearly 40% in the
number of discriminable categories, since from equation (7)

I~1log M — Y5 loge = log (M/+/¢e) = log (0.61M) (1.13)

The effect of using continuous stimulus distributions was not taken into account
by previous analyses (Griisser, 1962; Barlow, 1963), nor has previous work at-
tempted to analyze the effects of neuronal variability on information transmission
via a frequency code. Variability is of course always present and later a criterion
(2.14) will be given for deciding if the discharge is sufficiently regular for the for-
mulae of this section to apply. Now, I shall turn to the opposite extreme, the ran-
domly discharging neuron.

(c) A Completely Random Nerve Cell (Poisson Process). Assume that the
probability of j impulses occurring in response to a stimulus which produces x on
average is given by a Poisson probability density function; i.e.,

pi/x) = x'e=/j! (1.14)

This might occur in practice with one or more cells discharging randomly (Biscoe
and Taylor, 1963), but superposition of a large number of processes will tend to
produce a Poisson process over short periods of time, even if the individual processes
are not of this type (Cox and Miller, 1965, p. 363). I shall generally refer to a single
randomly firing cell, but the results will apply to the other examples as well.

The probability of no impulses is €%, so the probability of at least one impulse is
1 — e—=. Thus, one can consider a binary channel such as discussed previously, with
a=1— e~ ~ x, if x is small. For a neuron firing with frequency », x = »¢ may
grow linearly, but a will only slowly approach one. Thus, the channel capacity of a
randomly discharging cell using a frequency code will be less than that of a regularly
discharging one, and the difference increases with increasing stimulus duration. The
channel capacity of a randomly discharging cell is illustrated in Fig. 4 using the
same values as before, vmax = 100 and vmi» = 10 impulses/sec. As the stimulus
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duration increases, multiple responses occur more often, and at some stimulus
duration, inclusion of a third, intermediate stimulus increases information trans-
mission. Fig. 4 shows results calculated for binary, tertiary and quaternary channels
(m = 2, 3, 4), together with the over-all information capacity (top solid line).

The method of calculation was as follows: for a given stimulus set, all input probabilities
were initially made equal. The value of I was calculated for this probability distribution from
equations (1)-(5) and (1.14). Then, each input probability was changed systematically by
preset steps in the direction which increased the information until a maximum was reached.
The step size was then reduced, a new maximum was found and the process was repeated until
the maximum information was determined to within 0.001 bit, and the input probabilities
required to produce this maximum were determined generally to an accuracy of 0.002. Since
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FIGURE 4 Information capacity of a randomly discharging neuron as a function of the
duration of a maintained stimulus. The capacity using m = 2, 3, or 4 stimuli is indicated.
The solid line extending above these is the over-all capacity using the optimal number of
stimuli. The same range of mean impulse frequencies was used as for the regularly discharg-
ing neuron of Fig. 2. The time scale is logarithmic.

information is a convex function of the input probabilities (Ash, 1965), any maximum found
in this way must be the capacity for that stimulus set (there are no local maxima).

To find the over-all neuronal information capacity a second level of iteration was required.
Each of the stimulus values (x;) was altered in turn, and the new channel capacity was calcu-
lated and compared with previous values. The process was continued until an over-all maxi-
mum was found. In varying the x; , care must be taken to avoid local maxima which do occur.
Generally, the maximum capacity for a given number of stimuli, each of which has a nonzero
probability, occurred when the stimuli were approximately an equal number of standard
deviation units apart (with a stimulus x, the standard deviation in number of impulses pro-
duced by a Poisson process is \/ x. Therefore, initial stimulus sets were selected which
satisfied this criterion. This selection also reduced the requirements in computer time
considerably. Nonetheless, determination of the over-all neuronal information capacity
for some of the longer values of ¢ shown in Fig. 4 took several minutes of computation using
an ALGOL program on the English Electric KDF9 computer of the Oxford University
Computing Laboratory.
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The dashed line on the right is the simple formula

= 5 log (¢/T) (1.15)

where T = 91.2 msec. This is the asymptotic information capacity in the limit of
large ¢. For ¢t = 1 sec, the deviation from the asymptotic formula is 0.4 bits. (For N
similar cells, the numbers of impulses will be multiplied by N and this degree of ap-
proximation will be reached at 1/N seconds.) Fig. 5 shows some of the stimulus
distributions that are required to obtain the maximum channel capacity. As for the
regularly firing neuron, the distributions consist (except near the ends of the stimu-
lus range) of a set of nearly equiprobable stimuli, though the stimuli are no longer

b FIGURE 5 Stimulus distributions required to
06 attain the information capacity illustrated in
Fig. 4 for the randomly discharging neuron.
O4 The distributions consist, except at the ends of
the stimulus range, of approximately equi-

02 probable stimuli w1t’h the strengths indicated.
The stimulus durations are (a) 40 msec, (b) 100
o msec, (c¢) 300 msec, (d) 500 msec, and (e) 700

04 4 14410 3 94173 30 msec. The optimal stimulus spacing increases

with stimulus strength, because of the increase

in the standard deviation in number of impulses

. produced by a given stimulus (stimulus

strengths are measured in terms of the number

of impulses they produce). The optimal

© strengths are exact in (@), and were calculated

to the nearest 14 impulse in (b) to (d), and to

the nearest 14 impulse in (¢). The difference

e between information transmission using these

0-'2[ I l discrete distributions and related continuous
o L]

o
)

Probability, p(x)
Q.

[ | |

5 13 22 329 50

Stimulus

distributions goes to zero as the stimulus dura-
tion is increased.

7 154 258 374 50 70
Stimulus Strength, x

evenly spaced. The optimal distribution requires that the spacing be smaller at the
lower stimulus values where the standard deviation in numbers of impulses is
smaller. These discrete stimulus distributions are extremely unlikely under natural
conditions, but I will show in section (2 b) that the difference between the informa-
tion transmitted using a discrete distribution and a related continuous distribution
approaches zero as ¢ increases. This is in contrast to the result derived for the com-
pletely regular neuron, where the difference approached a constant, 0.72 bits.

(d) Intermediate Variability (Gamma Distribution). Most nerve cells do
not fire either completely regularly or completely at random. To produce inter-
mediate levels of variability, one can assume that a nerve cell produces an action
potential only for every rth input (a typical input may be a presynaptic action po-
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tential). If the inputs occur at random, the time to the rth input (interspike interval)
obeys a gamma distribution. Even if one allows the effect of each input to decay
exponentially, the interspike interval distributions can still be approximately fitted
by a gamma distribution (Stein, 1965) The channel capacity was calculated for r =
10 (Fig. 6 a) and r = 100 (Fig. 6 b) with vy, = 100 impulses/sec and vpin = 10
impulses/sec as before. One can easily show that the coefficient of variation (the
ratio of the standard deviation to the mean spike interval; see Stein, 1967) for a
gamma distribution is 1/4/7 which equals 0.316 and 0.1 if » = 10 and 100 respec-
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£ 47,
§~ FIGURE 6 Information capacity of a neuron
v of intermediate variability. The values were
3r calculated using a “gamma distribution”
model in which r randomly occurring presy-
naptic impulses are required to produce a
2t nerve impulse. In the upper graph r = 10
and in the lower one r = 100. As r increases
, the capacity at short durations approaches
b /’ more closely that of a completely regular
R4 neuron. At long durations the slope of the
f capacity versus log ¢ plot is a constant.
o - . i . ) ) Further explanation in text.
2 5 10 20 50 100 200

Time (msec)

tively. Nerve cells which fire even more regularly are known, but the trends are clear
from these two examples.

The method of computation was similar to that for the Poisson process described previously
except for the values in the channel matrix. If p(y;/x) is the probability that j impulses are
discharged in time ¢ when the mean number is x, then

_ r—1 —k (rx)(jr—k)e—rz r—1 k (rx)(jr‘i-k)e—rz
p(yi/%) ‘k‘g( r Gr—k1 & (7) Gr+ k1

The terms in the first sum are the products of two factors: the probability that at the start of
the stimulus at least k£ events had already occurred since the last nerve impulse, and the prob-
ability that jr — k events occur in time 7 from a Poisson process which produces rx on average.
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Similarly, the terms in the second sum are the products of the probabilities that less than k
events had already occurred since the last action potential before the start of the stimulus,
and that jr 4+ k events occur during the time ¢ when the mean number is rx (by summing
over all j, one can verify that the mean number of nerve impulses will in fact equal x).

The channel capacity approaches the values for the regularly firing neuron (Fig.
2) more closely, the smaller the value of ¢ or the higher the value of r. However, at
long times the slope of the capacity versus log ¢ plot approaches the same asymptotic
value (indicated by dashed lines in Fig. 6) as the Poisson process, though shifted to
the left on the time axis. A simple equation, which will be derived later, describes
the asymptotic results

C = Y log (rt/T) (1.16)

where T = 91.2 msec in this example. With » = 10, the information capacity ap-
proaches the asymptotic values closely (to within 0.2 bits) by 50 msec, but with r =
100, a difference of over 0.6 bits is still present at 200 msec. With higher values of r
the approach to the asymptotic values will be even slower, but by retaining an extra
term, a much more accurate asymptotic formula (2.15) can be derived. This is indi-
cated by the dotted line in Fig. 6 b which is accurate to within 0.2 bits by 200 msec.

2. Some General Results

In the previous section, the capacity of nerve cells to transmit information using a
frequency code was calculated for several important examples. A considerable
amount of digital computer time was required to obtain exact values, though some
simple formulae were mentioned which become increasingly accurate as the stimu-
lus duration ¢ is increased. I shall now derive these formulae as special examples of
much more general asymptotic formulae. The basic proof depends on the assumption
that (i) the discharge pattern is stationary and (ii) the variability in numbers of
impulses is large enough so that the equation for the conditional uncertainty of a
normal distribution can be used, but small enough relative to the total range of
numbers of impulses that the response distribution is little different from the stimu-
lus distribution. (Remember that the stimulus is defined in terms of the mean num-
ber of impulses it generates.) Sections (2 a) and (2 b) consider the two parts of the
second assumption. Both become exact as # — « and this permits the derivation of
the basic asymptotic results in section (2 ¢). However, the approach to the asymp-
totic formulae may be slow if the neuronal discharge is very regular; a more accurate
approximation for this case is calculated in section (2 d). The final sections generalize
the results for nonoptimal stimulus distributions, nonstationary discharge patterns,
and populations of nerve cells.

(@) Conditional Uncertainty. Cox and Miller (1965, p. 343) prove an im-
portant result based on the central limit theorem of mathematics. It can be stated as
follows: if the intervals between successive nerve impulses are independent,
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random variables (renewal process) whose probability distribution has mean p and
variance o2, the distribution of the number of nerve impulses is asymptotically normal
as t — oo, with mean x ~ t¢/u and variance

s~ o 1/t .1)

If a nerve cell is spontaneously active, the stimulus will start at some random
point in an interspike interval and the response is best treated as an equilibrium re-
newal process (Cox, 1962). For the gamma distribution with parameter » that was
considered earlier, it follows from equation (19) of Cox and Miller (1965 p. 343)
that the next term in the expansion of s? (i.e., the largest error term) is (1 — r—2)/6.
(With an exponential distribution, » = 1 and equation (2.1) is an exact expression.)
One can treat the data from nerve cells that are not spontaneously active as an
ordinary renewal process if the interval distribution for the first impulse is the same
as later intervals (Hodgkin, 1948) or a modified renewal process if it is different
(Katz, 1950).

The uncertainty of a normal distribution (Shannon, 1948) depends only on its
standard deviation s according to the equation

H = log [v/2xes] 2.2)

From equations (2.1) and (2.2) one can calculate the conditional uncertainty pro-
duced by a stimulus from the mean u and standard deviation o of the interspike
interval distributions. ‘

The central limit theorem only proves that the distribution is normal for large
numbers of impulses. At the lowest numbers, a Poisson density function, equation
(1.14), may provide a better approximation. Then, the conditional uncertainty is

H(Y/x) = —J;P(J’j/x) log, p(y;/x)
= — Z:) [x’e="/j!][j log: x — x logs ¢ — logs (j)]

H(Y/x)

—x log: (x/e) + ]Z_; [x’e="/j!log: (j!)] (2.3)

The standard deviation of a Poisson distribution is 4/x so the error in using equa-
tion (2.2) instead of equation (2.3) can be calculated. For x = 1 (on average only
one impulse is discharged in time 7) equation (2.2) gives log.4/27e = 2.04 bits
while equation (2.3) gives 1.88 bits, a difference of only 0.16 bits. As x increases the
Poisson distribution approaches a normal distribution and the differences are even
less.
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(b) Optimal Stimulus Distributions. As indicated in section (1 ¢), the
optimal stimulus distribution with small numbers of impulses consists (except at the
very ends of the stimulus range) of a set of discrete stimuli whose spacing varies ap-
proximately as the standard deviation s of the number of nerve impulses produced
in time ¢. As ¢ increases, the difference between the information one can transmit
with such a discrete stimulus distribution and with related continuous distributions
decreases. In the limit of large ¢, the optimal stimulus distribution is in fact a con-
tinuous distribution, whose probability density function is given by

p(x) = A/s(x) (2.4)
where A is a constant such that
1 Tmax dx
= hasddl 2.
A '/;min N ('x) ( 5)

Equation (2.4) states that the probability density function for the occurrence
of particular stimuli must vary inversely as the standard deviation in number of
impulses. The standard deviation will be some function s(x) and the factor 4 merely
ensures that p(x) is a proper probability density function; i.e., its integral over the
whole stimulus range is one. The proof of equation (2.4) consists of two parts. First,
one can show that the inverse relationship between the density of stimuli, p(x), and
the variability, s(x), is correct, or, more precisely, that the optimal stimulus distribu-
tion consists of a number of equiprobable stimuli whose spacing is proportional to
s(x). Then, one can show that the optimal spacing for large ¢ is negligibly small (i.e.,
the optimal stimulus distribution is a continuous distribution). I will assume through-
out that variability is small relative to the range of responses, namely s(x) < X max —
Xmin for all x. This has the important consequence that effects at the very ends of the
stimulus range can be neglected. This assumption becomes increasingly good as ¢
increases since for a nonadapting neuron Xmax — Xmin ~ (Ymax — ¥min)? and from
equation (2.1), s(x) increases only as +/7. Thus, the variability relative to the range
of responses decreases as 1/4/7.

The uncertainty of a normal distribution (equation 2.2) is determined by its
standard deviation alone. It was shown above that, even when the mean number of
nerve impulses is quite small, the conditional uncertainty may approximate closely
to the uncertainty of a normal distribution having the same standard deviation. If
this is so, one can prove the first part directly by considering a stimulus distribution
which consists of a number of equiprobable stimuli whose spacing is proportional
to the value of the standard deviation in number of impulses s(x) at each stimulus
level. The confusion between stimuli (and hence the information/stimulus) is then a
constant, and Fano (1961) showed that this was a condition for maximizing informa-
tion transmission with a given stimulus set.

To prove the second part, namely that the optimal stimulus spacing becomes
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negligibly small as ¢ becomes large, one can transform from a coordinate system x
to a new coordinate system x’ in which s(x’) is approximately constant, by setting
dx’ = s(x) dx. Shannon showed that such a transformation of coordinates will not
alter the information transmission. From the first part of the proof, one knows that
in the new coordinate system the optimal stimulus distribution consists of a series of
equiprobable and, since s(x’) is approximately constant, equally spaced stimuli. If
there are m stimuli, p(x;) = 1/mfori = 1, 2, --- , m, the average conditional un-
certainty (assuming s large enough that equation (2.2) holds) is

H(Y/X) = 3 ) H(¥/x:) = log (/2re5)

independent of m. Since H(Y/X) is independent of m, and I = H(Y) — H(Y/X),
the maximum information will be transmitted where H(Y) is a maximum. This will
occur as the number of m equiprobable, equally spaced stimuli becomes very large,
because the stimulus distribution and hence the response distribution (variability
was assumed small compared to the total stimulus range) will then approach a
rectangular distribution. Shannon (1948) proved that a rectangular distribution has
the maximum uncertainty of any distribution which is limited to a particular range of
values. Thus, the optimal stimulus distribution approaches a continuous distribu-
tion although the information transmission is rather insensitive to the exact spacing
and, for spacings as large as 3s (three standard deviations apart), the number of
discriminable categories is only reduced by 1% . To complete the proof, it may be
noted that a rectangular distribution in the new coordinate system transforms back
to give exactly equation (2.4) in the old coordinate system.

(c) The Asymptotic Information Capacity for Large t. Using the results of
the last two sections, the information capacity can now be readily derived. Assume
once again that 7 is large enough so that the variability in numbers of impulses is
small compared to the total range of responses. Then, the response distribution will
be little different from the stimulus distribution, and the response uncertainty is

H(Y) = — fp(y) log p(y) dy ~ — fp(x) log p(x) dx. (2.6)

Secondly, the absolute variability in numbers of nerve impulses grows with time, and
I will assume that ¢ is large enough so that the conditional uncertainty approaches
closely that of a normal distribution (equation 2.2). Then,

H(Y/X) = [ p(x)H(¥/x) dx ~ [ p(x) log Iv/Zresxiax  (27)

The information transmitted is

I=H(Y) —H(Y/X)~— [ p(x) log [v/Zme p(x)s(x)]dx  (28)
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The information capacity is, by definition, the amount of information transmitted
when the stimulus distribution is optimal. Equation (2.4) gives the optimal distribu-
tion in the limit of large ¢ so

CEm?xI~ - xp(x) log [\/27e A] dx = — log [\/2xe Al
p(x) Tmin

Then, from equation (2.5), the basic asymptotic result follows for the information
capacity of a neuron using a frequency code

e~ [ ) 2s)

Substituting the approximate equation (2.1) and the facts that x = #/u, dx =
— (t/u?) du, Xmax = t/po and Xmin = /u1, a very useful relation is obtained for cal-
culating the information a neuron can transmit in terms of the parameters of the
interspike interval distributions.

c~mly/E %]

o, the standard deviation of the interval distribution, may vary as a function of the
mean interval. The most common relationship found experimentally (Buller, Nicholls
and Strom, 1953; Biscoe and Tayler, 1963; Goldberg, Adrian and Smith, 1964;
Werner and Mountcastle, 1965; Stein and Matthews, 1965; Biederman-Thorson,
1966; Junge and Moore, 1966; Silk and Stein, 1966) is that the standard deviation
increases, at least over parts of its range, as a power function of the mean interval;
ie.,

o = bu" (2.11)

where b and » are constants and generally » > 1. In other words, the coefficient of
variation ¢/u is a nondecreasing function of x. Substituting into equation (2.10) and

integrating
C ~ log [1/1 (M)] (2.12)
27we bk

Equation (1.16), the asymptotic formula for a gamma distribution is obtained from equa-
tion (2.12) by noting that for a gamma distribution ¢ = p/\/r,son = 1,k = 0.5,and b =
1/\/;. It was also assumed in the example that uo = 10 msec and x; = 100 msec.

where k = n — 0.5.

(d) Very Regular Neurons. To obtain equation (2.10) from equation (2.9),
the approximate equation (2.1) was used. As indicated earlier, the approximation
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will be good if o2t/u* > 14, or
3
Ll 2.13
£ (2.13)
For the gamma distribution example of Fig. 6 b where r = u2/¢> = 100, this in-

equality is valid for a mean interspike interval of 60 msec if

> (%Q) (100) msec = 1 sec.

The approach to the asymptotic formulae will be even slower for more regular
neurons. On the other hand, if

3

L 2.14
1< (2.14)
the formulae for the completely regular neuron (section 1 b) will hold. By retaining
an extra constant term in the expansion of s, one can obtain a more accurate asymp-

totic formula than equation (2.10) for regular neurons

€~ log [f,..m Vel +‘”d;wx/r<x)1] (215)

where r(x) = u?/0? is considered as a function of x and it is assumed that r(x) > 10.
Integration of this equation for 7(x) = 100 gives the dotted line on the right of Fig.
6 b which considerably improves the fit to the computed (solid) line.

The derivation is as follows: if r(x) is greater than 10, a better approximation to s(x) is
given by [see equation (2.1) and the discussion following it]

s(x) ~ V' x/r(x) + 3%

For the completely regular neuron, r(x) — « for all x, it would follow from equation (2.2)
that the average conditional uncertainty would be log \/2we/6. In fact, this slightly over-
estimates the average conditional uncertainty when a rectangular stimulus distribution is
applied._ The uncertainty was found to be 14 using natural logarithms, or more generally
log \/e [see discussion leading up to equation (1.13)]. Thus, a slightly better approximation
for use in informational calculations is given by

X 1
~Y — ——
$(x) 1/ O
Substituting this expression into equation (2.9) gives equation (2.15).

For durations above about 50 msec, equation (2.15) may give a more realistic estimate of
the maximum information a neuron can transmit than the digital computer values. To attain
the computed values, one would need a series of discrete stimuli whose intensities were exactly
matched to those of the neuron. As indicated in section (1 b), this is highly unlikely under
natural conditions, and the optimal stimuli for one neuron will not agree with those for
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another with even slightly different firing rates. Equation (2.15) depends only on the “average’’
way in which variability increases with x, and is therefore appropriate when considering
populations of neurons.

(e) Serial Correlations Between Interspike Intervals. The derivation of
equation (2.10) and equation (2.11) assumed that successive interspike intervals
were independent. Serial correlations between adjacent intervals are often found
(Kuffler, FitzHugh, and Barlow, 1957; Geisler and Goldberg, 1966) though only the
first order serial correlation coefficient p, may be significantly different from zero
(Jansen, Nicolaysen, and Rudjord, 1966). Serial correlation coefficients of all orders
are readily accommodated if their values decrease rapidly enough to zero as the
order i — « (Cox, 1962, pp. 104, 134); then equation (2.1) becomes

s? ~ aot/u? (2.16)

where @ = 1 + 2 Y p;. Substituting equation (2.16) into equation (2.9) produces

=1
an expression for the information capacity of a neuron for large ¢ which takes into
account serial correlations between successive interspike intervals.

t [*_dp
~ r “ 17
c 1og|:1/21ref"o \/‘M] (2.17)

(f) Nonoptimal Stimulus Distributions. The proof that equation (2.4) is
the optimal distribution makes the basic assumption that the variability in the num-
ber of impulses is small compared to the total range of responses. I showed that the
assumption became increasingly good as ¢ increases, but to the extent that this assump-
tion is not obeyed, equation (2.4) does not give the optimal stimulus distribution,
and the asymptotic formulae, corrected if necessary for extremely regular cells
(equation 2.15), tend to underestimate the channel capacity. In addition, the natural
or experimental stimulus distributions may not closely approximate the optimal
distribution, though one can use the observed stimulus distributions to calculate
asymptotic values for information transmission from equation (2.8). With the
rectangular stimulus distribution given by equation (1.10), one finds

IN log [(xmsx - xmin)/‘\/z_ﬂ'e] - (xmax - -xmin)_1 f E‘mx lOg S(X) dx

This expression can often be integrated. For example, if one substitutes equations
(2.1) and (2.11), one finds after some algebra

— —1 -1
I~log[,‘/§e(”° ;ﬂl ):l

4 (n — 1.5) (Hologm _mlogu . e> (2.18)
1 — Mo M1 — Mo
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Equation (2.18) reduces to equation (2.12) if n = 1.5 (a rectangular distribution
is then the optimal distribution since s = to?/u’ = bt, independent of x). When

M1 — © (vmin — 0),
1—n
t €
I~ log [/‘/;‘;’ bﬂo"—*:l

For a gamma distribution (n = 1) and assuming uo = 10 msec and u; = 100 msec,
equation (2.18) predicts a value for 7 independent of the value of  which is 0.08 bits
less than the information capacity given by (2.12). Thus, application of a rectangu-
lar (rather than an optimal) stimulus distribution would only reduce the number of
discriminable categories by 6%, often a negligible amount.

(g) Stationary and Nonstationary Discharge Patterns. Each of the asymp-
totic formulae I have derived (equations 2.10, 2.12, 2.15, 2.17, and 2.18) has the
property that for large ¢,

I~ log /1T (2.19)

where T is a constant. This is a direct consequence of the central limit theorem and
will hold whenever the discharge is stationary and the interspike interval has a finite
variance (o2 < ).

The central limit theorem insures that s(x) increases as \/7, so one can write s(x) =
s()V/t, where x = vt. Similarly, if the discharge is stationary, p(x) = p(»)/t and dx = tdb,
so equation (2.8) becomes

I~ = [ p(») 10g [v/Zr p(s)s(v)/ v/l do

= 10g 4/ 55 = [ ) 1og [ps )1 v

The integral on the right is independent of time and so the equation is of the form of equa-
tion (2.19) where

T = 2me't® (2.20)
and B = {[p() In [p()s()] dv}®

All the limiting relations, therefore, are parallel with a slope of 24 on a plot of C
versus log ¢. Measurement of four times as long a discharge will yield one bit more
information or twice the number of discriminable categories. The variability or
regularity of discharge, and the extent to which the optimal stimulus distribution
is approached, only shift the line along the time axis.

If the impulse frequency adapts to a maintained stimulus (the discharge is then

820 BIOPHYSICAL JOURNAL VOLUME 7 1967



not stationary), the advantage of longer stimuli will be less significant since the
number of impulses will increase less quickly with time. If there is any random ele-
ment linking the natural stimulus to the discharge which causes the mean frequency
to fluctuate from stimulus to stimulus with a variance f2(v), then the total variance in
number of impulses will have two components

si(x) = ts*(v) + [f )]
and

V

i \/Zref(v [ 1/1 + sz(,,)/(tf2(,,))]

C~ (2.21)

For ¢ sufficiently large, the square root on the right must approach unity and the
channel capacity is then independent of time. In other words, the maximum amount
of information that can be transmitted about a single stimulus via a frequency code
is ultimately limited by the reproduciblity of the mean frequency of nerve impulses
generated by the stimulus.

(h) More Than One Cell. Stimuli do not normally affect single nerve cells,
but populations of cells. Stronger stimuli will not only increase the frequency of
cells that are already active, but may also recruit new cells. If the important variable
is the total number of nerve impulses discharged by N cells in time ¢, one can write
from standard formulae (Feller, 1957)

,Z-:l s+ 2 Z pij
where x; and s;2 are the mean and variance in the number of nerve impulses dis-
charged by the ith cell in time #. p;; is the correlation coefficient between the number
discharged by the ith and the jth cell and the second sum extends over all pairs of i
and j for j =2 upto N wherei < j. Inthe special example of N identical, independent
nerve cells, it is easily shown that an equation such as equation (2.10) would be-

come
~ Nt [* du ]
c logl:1/21re fm v (2.22)

The asymptotic information capacity for a given value of ¢ is increased by 14 log
N. Alternatively, one could transmit the same information in a fraction ¢/ N of the
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time. (In fact, one would generally be able to transmit rather more as the asymp-
totic formulae tend to underestimate information transmission for short ¢.) If the
neurons are independent, but not identical, the central limit theorem again insures
that the number N affects the information transmission as in equation (2.22). In
practical situations, the extent to which information transmission can be enhanced
by summation of numbers of cells will be limited by any underlying correlation be-
tween neurons; i.e., the extent to which stimulus independent variations in the fre-
quency of one neuron are correlated with those of the rest of the population.

These results apply only to functionally similar groups of neurons. An obvious
example of a functionally similar group is the alpha motoneurons which innervate a
synergic group of muscles, and an equally obvious counter-example is the entire
population of alpha motoneurons in a ventral root. A stimulus may excite flexor
motoneurons and inhibit extensor motoneurons without changing the total number
of nerve impulses very much. However, if the two groups of motoneurons are
analyzed separately, a considerable amount of information may be available about
the strength of the flexor reflex stimulus.

Another clear example of a functional group is those neurons which excite a
single higher order neuron. The information about a stimulus contained in the dis-
charge of higher order neurons can be analyzed and compared with that of lower
order cells. In this way one can study the flow of information in the nervous system,
but one must be careful to use appropriate stimulus patterns for each cell. The addi-
tional processing at each synapse may soon lead to rather complex pattern analysis
(Powell and Mountcastle, 1959; Hubel and Wiesel, 1963; Oonishi and Katsuki,
1965), and the total information present at each level is the sum of the number of
bits of information available about each pattern that is analyzed independently.

DISCUSSION

In Fig. 7 the results for neuronal information transmission using a frequency code
are summarized and compared schematically with those using other codes. (In this
figure the small periodicities which are evident in Figs. 2 and 6 were neglected, and it
was assumed that the neuron was discharging spontaneously.) All the codes give
similar values for very short times, when the probability of an impulse is much less
than one. The neuron can then be considered as a binary channel and its capacity is
given by equation (1.1). However, as the stimulus duration increases and multiple
responses occur more frequently, the scope for efficient coding expands enormously.
The properties of a nerve cell as a communications channel can be summarized in a
plot of information capacity against the duration of a maintained stimulus. Curve a
in Fig. 7 represents the capacity of a randomly discharging cell which uses a fre-
quency code. If the capacity is measured in bits of information and the time scale is
logarithmic with each unit representing a doubling of stimulus duration, then equa-
tion (1.15) indicates that the slope of such a plot will approach 14 at long times. This
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is a general limiting result for frequency coding (section 2 g) if (I) the discharge is
stationary and (2) the stimulus generates an exactly reproducible mean impulse
frequency. (There are other conditions which are unlikely to cause trouble in prac-
tice; e.g., the variance of the interspike interval distribution must be finite.) From the
equation (2.12) or (2.17) one can calculate the asymptotic information capacity
directly from the parameters of the interspike interval distributions which are now
commonly measured experimentally.

If the discharge is sufficiently regular (curve b), the approach to the limit will be
slow (section 2 d), and the slope on an information versus log time plot may have a
slope of one until times long enough that the inequality (equation 2.14) no longer
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FiGURe 7 Schematic representation of the information capacity as a function of stimulus
duration for a neuron, (a) discharging randomly and using a frequency code, (b) discharging
fairly regularly and using a frequency code, (c) using a binary pulse code, and (d) using an
interval code. Explanation in text.

holds. To the extent that the conditions above are not satisfied, the capacity will be
further limited at long times and may approach a constant value (section 2 g). This
effect was noted experimentally by Werner and Mountcastle (1965).

Curve ¢ in Fig. 7 represents the capacity using a binary pulse code. With a binary
code, a constant number of bits/second can be transmitted so the capacity increases
linearly with time, and exponentially when plotted against log ¢. Curve d in Fig. 7
represents the information transmitted using an interval code. Mackay and McCul-
loch (1952) showed that using the length of each interval to encode information
might further increase the number of bits/second transmitted and hence curve d
is a larger exponential in this figure.

Mackay and McCulloch (1952, p. 134) were careful to point out that their cal-
culations “must not be taken to imply a belief that either binary coding or pulse
interval coding in the communications engineer’s sense is the mode of operation of
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the central nervous system.” In fact, they noted that ‘“there has been steady accumu-
lation of other evidence which has been adduced in favor of models employing
frequency modulation,” and that ““the statistical nature of nervous activity must pre-
clude anything approaching realization in practice of the potential information
capacity of either mechanism.” Yet, in the 15 yr since their article, there has been to
my knowledge no comparable analysis of the information that can be transmitted
by neurons which use a frequency code and are subject to variability. I have there-
fore concentrated in this paper on frequency coding and the effects of variability,
though I would not claim that all neurons use frequency coding. The nervous system
can locate a sound source accurately by using mutually inhibitory connections be-
tween neurons on the two sides of the body to detect the difference in time of arrival
of the sound at the two ears (Hall, 1964). Thus, some precise temporal information is
available in addition to that contained in the mean frequency of firing. Hall notes
that ‘“these cells may be thought of as logical transducers that convert stimulus
differences at the two ears into patterns of response activity which can be ‘read’ by
higher neural centers.” In other words, the output from this group of cells is in terms
of total numbers of nerve impulses. Thus, the results of this paper are applicable, and
the amount of precise temporal information retained should be calculable (though,
at least with brief ‘“click” stimuli, recruitment of more nerve cells rather than tem-
poral summation is used exclusively). As indicated in section (2 4), there is a basic
trading relationship between stimulus duration and the number of functionally
similar cells. If the stimulus is shortened by a given factor, the same amount of in-
formation can often be transmitted by multiplying the number of nerve cells by the
same factor

Except in section (2 h), relatively little has been said about the way in which in-
formation is decoded or, in other words, the extent to which it is available to higher
order neurons. The formulae give values only for the maximum information that
can be obtained from knowing the total number of impulses that were discharged in
a given period of time. Many of these impulses will be ineffective in synaptic trans-
mission for several reasons. First, the higher order neurons will be refractory a cer-
tain part of the time. Secondly, if a neuron is discharging slowly, the effects of many
impulses will decay away during an interspike interval and not contribute directly
to action potential initiations. Finally, inhibitory inputs which cause membrane
hyperpolarization (or subtract from membrane depolarization) will increase vari-
ability at a given mean frequency (Stein, 1965) and hence decrease information
transmission. However, these examples illustrate the general rule (Ash, 1965 p. 85)
that data processing cannot increase the amount of information. Data processing
merely transforms it into a more useful form, possibly at the cost of considerable loss
of information. This loss in neuronal data processing can be assessed experimentally
since the same formulae apply to all nerve cells which use frequency coding. Thus,
one can determine how much information higher order cells retain about the
stimulus.
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Finally, a comment is needed on the magnitude of the differences between the in-
formation capacities of systems using frequency coding, and those using binary or
interval coding. Calculations from preliminary experimental data (Stein and
Matthews, 1965) indicate that even extremely regular muscle spindle afferent fibers
transmit, at most, about a half dozen bits of information about a maintained stimu-
lus lasting a second (see also Werner and Mountcastle, 1965), not the hundreds or
thousands which binary or interval codes predict. However, it must be recalled that
the capacities calculated here represent the amount of information transmitted about
a single stimulus as a function of its duration. To convert these figures to bits/
second for direct comparison with earlier estimates, it is necessary to specify the
stimulus repetition rate. The maximum repetition rate that a nerve cell can follow
adequately must be determined experimentally One cannot assume that, because
one bit of information is transmitted about a stimulus lasting ¢ milliseconds, 1000/¢
bits/sec can be transmitted about stimuli presented every # milliseconds, unless it has
been shown experimentally that the responses to successive stimuli are independent
(cf. Jacobsen, 1951). The maximum allowable repetition rate will decrease at higher
levels of the nervous system since synaptic transmission tends to integrate (excita-
tory) presynaptic inputs over a period of time (Maffei and Rizzolatti, 1967).

Similarly, to specify the capacity of a system or whole organism, one cannot
multiply the bits/second transmitted by one cell by the number of cells unless one
has shown that adjacent cells or groups of cells function as separate channels. At
higher levels of the nervous system, spatial summation of the impulses generated by
large numbers of nerve cells may severely limit the number of such separate channels,
and at the level of decision making, there is surprisingly little independence, even
between the two sides of the body (Broadbent, 1958) or different sensory systems
(Davis, 1957). According to equation (2.22) the same stimulus applied simultane-
ously to 1000 independent, functionally similar cells would provide only 5 bits more
information instead of 1000 times as much, which would result if each cell were used
as a separate channel. These differences should help tremendously in bringing esti-
mates of the information capacity of single cells and systems of cells into line with
those of human information capacities which were mentioned in the Introduction.
The reasons for the apparently vastly inefficient means of transmitting information
have also been considered and might be summarized by saying that the aim of the
biological organism is maximum survival, not information transmission. However,
once one understands how the nervous system codes the patterns which are neces-
sary for its survival, information theory should provide a very useful way to measure
efficiency and to compare different sensory modalities and different levels of the
nervous system.
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